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Abstract

One-dimensional simulations provide an appropriate level of detail for studying the reactor dynamics of gas–solid metal hydride

absorption heat pumps, which are a class of reacting flows. Because of the high energy densities and consequent difficulty in op-

timizing the reactors for finite time thermal performance, steep concentration gradients develop near energy transfer boundaries.

With a uniform and fixed grid capable of resolving the gradients, the computational cost of a simulation can be considerable.

Adaptive grid methods have been shown to reduce the computational cost in several classes of problems by reducing the overall

discretization error compared to fixed grids using the same number of nodes through redistribution of node density. However the

class of problems including mass and energy source terms, which are a prominent feature in reacting flows, are not well represented

in the literature. In this paper an adaptive moving grid formulation is developed for a model of a metal hydride heat pump and the

influence of the source terms evaluated. The grid satisfies an elliptic mesh equation to ensure smoothness, and grid motion is de-

termined by a gradient-based logarithmic weight function of the absorbed hydrogen concentration, which avoids grid collapse. The

strategy is shown to improve the resolution of monotonic gradients near heat transfer boundaries. The scheme performs less well

when features exhibiting curvature appear simultaneously. � 2002 Published by Elsevier Science Inc.

Keywords: Adaptive finite difference method; Metal hydride; Heat pump; Reacting flow

1. Introduction

The heat and mass transfer processes in many en-
ergy conversion systems such as absorption heat pumps
produce large concentration gradients. These gradients
accompany moving reaction fronts during cyclical oper-
ation (Frauhammer et al., 1998), and have their origin
in the high energy density of the absorbants, and cor-
respondingly high local heat fluxes associated with finite
power operation. Resolving the reactor dynamics in the
neighborhood of these gradients is important because
most absorption and desorption occurs there. Similar

phenomenology arises in other fields, such as elect-
rochemistry (Bieniaz, 1993), phase change problems
(Mackenzie and Robertson, 2000), and inertial con-
finement fusion simulations (Yasar and Moses, 1992).
An example of such a system is a two-reactor five-

step refrigeration cycle (see Fig. 1a) realized using high
energy density metal hydride reactors. The design and
characterization of recent reactors is described in Kim
et al. (1998). A computational simulation of this sys-
tem, which formed an integral part of the reactor opti-
mization program, is shown in Fig. 1b, illustrating
the concentration gradients which initiate and develop,
particularly in the regenerator. Peak gradients in the
latter phase exceed 5� 103 (m�1). This modeling used
constant mesh spacing on a fixed grid, as described in
(Lloyd et al. 1998,1999; Lloyd, 1998), as has been
common in these types of purely Eulerian simulations.
Achieving fidelity in these calculations requires a fine

mesh in regions of large gradients and curvature, ne-
cessitating a uniformly spaced mesh with many grid
points—a computationally expensive approach—or a
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purely Lagrangian approach (Crowley, 1967), which is
not applicable here. An alternative approach is based

upon adjusting the allocation of grid points, and there
are two main classes of such methods. In multigridding

Nomenclature

A reaction prefactor (kmolH/kmolh s)
c heat capacity (Ws=kgK)
Ea activation energy (J/kmolH2)
g heat generation term (J/sm3

ðcÞÞ
h1 heat transfer coefficient (W/m2C)
hcsw solid-phase/wall heat transfer coefficient
hcfw fluid-phase/wall heat transfer coefficient
hsf interstitial heat transfer coefficient
I grid jacobian
keff effective thermal conductivity (W/mK)
kf thermal conductivity H2 (W/mK)
K permeability (m2)
N number of nodes
NuD interstitial Nusselt number based upon par-

ticle diameter, hsfD=kf
peqH2 equilibrium hydride pressure (N/m2)
�RR perfect gas constant 8314 (J/kmolK)
t time coordinate (s)
T
s

temperature function for solid phase (K)
T
f

temperature function for fluid phase (K)
TwðtÞ average wall temperature (K)
Tcold temperature of cold reservoir (�C)
Thot temperature of hot reservoir (�C)
v Darcy filtration velocity (m/s)
x absorbed hydrogen concentration (kmolH/

kmolh)

xamax to xbmin
plateau region of the metal hydride

dr energy deposition depth (m)

dAsf=dVðcÞ
specific surface area (m2/m3

ðcÞ)
av volumetric heat transfer coefficient (W/m3 K)
b grid constant
l viscosity (Pas)
c molecular weight (kg/kmol)
/ porosity (m3

pore=m
3
ðcÞ)

_uu field source term for hydrogen (kgH2/m
3
ðcÞ s)

} hydride density (particlesh=m
3
ðcÞ)

Superscripts and accents
0 refers to regenerator property
i pertaining to the i-phase
f .

n
, f .

n
i discrete value of f at time step n (and node i)

Subscripts
(c) refers to continuum
H2 hydrogen
R reactor
w reactor wall

Acronyms
LTE local thermal equilibrium

Fig. 1. (a) Block diagram of the heat pump system studied in the paper. Two reactors exchange hydrogen during a cycle of five phases whereby

thermal energy is pumped from the low temperature reservoir to the ambient reservoir. Solid lines show heat transfer, (b) LTE simulation of ab-

sorbed concentration using a fixed grid, showing the monotonic desorption profile in the regenerator during preheating and charging, and the re-

action front during the remaining steps.
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or static refinement (Huang and Russell, 1999), features
of the solution are identified and a locally refined, but
uniform grid, is added. The simplicity of error estima-
tion on uniform grids is retained, but the method is pro-
grammatically difficult and appears ill-suited for moving
features. In moving grid approaches, on the other hand,
the number of elements remains fixed but grid point
locations vary with time and are coupled to features in
the solution.
In elliptic problems the benefits of iterative adaptive

solution procedures falling into the latter category have
long been appreciated (Lawal, 1990), and we use this
setting to introduce the basic procedure with the con-
vection–diffusion equation,

f;xx � mf;x ¼ 0 with
f ðaÞ ¼ 0;
f ðbÞ ¼ 1;

�
ð1Þ

where, m is the dimensionless Peclet number and for
which the solution is f ðxÞ ¼ ½emðx�aÞ � 1	½emðb�aÞ � 1	�1,
for m 6¼ 0. The solution to Eq. (1) qualitatively resembles
the simpler features occurring in the metal hydride sys-
tem. The procedure is then extended to the time-
dependent problem at hand.
We begin with a parameterized coordinate transfor-

mation of the independent variables, defined generally
as follows:

z ¼ zðn; sÞ; zðn; sÞ
\

½0;1	�½0;1	

7!½a; b	 ð2Þ
with Jacobian J ¼ z;n. Applying the chain rule to Eq.
(2), derivatives with respect to the logical space coordi-
nates can be expressed with respect to the physical space
coordinates and functions of the Jacobian and the grid
speed z;s in the following way,
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Applying Eq. (3)1,2 to Eq. (1) results in an equation
transformed to logical space coordinates which can then
be discretized appropriately.
It is accepted that smoothness is a necessary condi-

tion for minimizing truncation error in adaptive schemes
(Daripa, 1992; Knupp and Steinberg, 1994). Additional
features of any grid scheme must include well posedness
and robustness, so that the final grid is not erratically
influenced by feature variations, the presence of con-
straints to prevent grid collapse and excessively small
time steps, and the condition that a uniform solution
should result in a uniform grid. The smoothness crite-
rion can be ensured by basing the grid distribution upon
a Poisson density,

z;nn �
w;n

w
z;n ¼ 0 ð4Þ

subject to Dirichlet boundary conditions. Eq. (4) arises
by setting the grid Jacobian proportional to a weight
function, J / wðzðnÞÞ, or J � w�1 ¼ constant. Differen-
tiation by n yields Eq. (4); x�1 is sometimes referred to
as a monitor function (Bains, 1998). The weight func-
tion w controls the local grid point density (Knupp and
Steinberg, 1994). A commonly used choice for w which
concentrates the mesh in regions of high gradients is
wðzÞ ¼ ð1þ b2f 2;zÞ

�1=2
(Mackenzie and Robertson, 2000).

Unfortunately, this choice of w can lead to arbitrarily
small grid spacing and in practice is overly sensitive to
a wide range of spatial scales. A suitable alternative
(‘‘WFGRADLN’’), in which a minimum weight Jmin can
be set, is proposed as follows:

w ¼ ð1�JminÞ 1
�

þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbf;zÞ2

q ��1
þJmin;

Jmin < 1 ð5Þ

The parameter b is related to the characteristic gradient
for a problem. This weight function satisfies all the cri-
teria mentioned above. The constant Jmin is chosen to
provide the minimum grid Jacobian tolerable. Eq. (4) is
solved using the discrete coordinates, resulting in a
standard tridiagonal system of nonlinear equations of
the form: AðzÞz ¼ b which are solved iteratively using

LU-decomposition, zpþl ¼ A
�1
ðzpÞb, following the scheme

in Fig. 3. An analogous weight function arises by re-

placing f;z with the curvature j ¼ f;zz½1þ ðcf;zÞ2	�3=2
(‘‘WFKAPPALN’’).
Eqs. (1) and (4) were discretized using the difference

formulas summarized in Table 1, derived using a null-
space technique (many of which, of course, are com-
monly known). Several pertinent results are summarized
in Fig. 2 from which two things can immediately be
discerned. First, the maximum truncation error mono-
tonically tracks a decrease in Imin. Secondly, for Jmin
constant, increased curvature weighting (i.e., a ! 0)
results in a monotonic decrease in maximum truncation
error.
The results apparent in Fig. 2 and from previous

experience (Mackenzie and Robertson, 2000; Farrell
and Drury, 1998; Daripa, 1992; Bains, 1998; Liu et al.,
1998) suggests that reacting flow calculations would
benefit from the moving grid approach, and it would
seem well suited to the problem at hand. Nevertheless
none of the afore-referenced studies involve field source
terms, and the behaviour of moving grids applied to
such problems has not been adequately investigated. In
particular, this class of problems is complicated by the
availability of multiple feature variables whose evolu-
tion may independently dictate competing grid adap-
tation. In the sequel this issue is studied through a
comparison of a moving grid formulation with bench-
mark fixed grid results.
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2. Formulation

It is assumed that the system performance and basic
reactor dynamics can be modeled by considering the
reactors as cylindrical ID domains. The equations
(Lloyd et al., 1999) for this formulation are a conser-
vation of mass equation,

Kc
�RRl
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a solid phase energy equation:

ðT
f

� T
s

Þhsf
dAsf
dVðcÞ

þ ð1� /Þks
1

r
oT
s

or

2
4 þ o2T

s

or2

3
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; _uu < 0; adsorp:
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¼ ð1� /Þqscvs
oT
s

ot
ðW=m3

ðcÞÞ ð7Þ

Fig. 2. Adaptive grid test problem. Counter-clockwise from bottom-left: (1) example grids for several values of a, where a is a weighting factor,

w ¼ awr þ ð1� aÞwj; (2) truncation error behaviour as a function of curvature weighting; (3) truncation error behaviour as a function of minimum

Jacobian; (4) comparison of theoretical and estimated gradient and curvature; (5) grid weight fields for a ¼ 0:7.

Table 1

Finite-difference derivatives on equi-spaced stencils, Oðh2Þ
Derivative f .

i�4
f .

i�3
f .

i�2
f .

i�1
f .

i
f .

iþ1
f .

iþ2
f .

iþ3
f .

iþ4
Leading trun-

cation error

Centered

2hf 0
i �1 0 1 � 1

6
h2f ð3Þ

h2f 00
i 1 �2 1 � 1

12
h2f ð4Þ

2h3f 000
i �1 2 0 �2 1 � 1

4
h2f ð5Þ

Forward

2hf 0
i �3 4 �1 1

3
h2f ð3Þ

h2f 00
i 2 �5 4 �1 11

12
h2f ð4Þ

2h3f 000
i �5 18 �24 14 �3 7

4
f ð5Þh2

2h3f 000
i �3 10 �12 6 �1 1

4
f ð5Þh2

Backward

2hf 0
i 1 �4 3 1

3
h2f ð3Þ

h2f 00
i �1 4 �5 2 11

12
h2f ð4Þ

2h3f 000
i 3 �14 24 �18 5 7

4
f ð5Þh2

2h3f 000
i 1 �6 12 �10 3 1

4
h2f ð5Þ

320 G.M. Lloyd et al. / Int. J. Heat and Fluid Flow 23 (2002) 317–329



and a fluid phase energy equation:
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Hydrogen is assumed to be an ideal gas. The source
terms g and _uu in these equations are given by the fol-
lowing (Lloyd et al., 1998):

_uu ¼ � 1
2
N0

ox
ot

� �
r

cH2}
kgH2
sm3

� �
;

g ¼ 1
2
N0

ox
ot

� �
r

jDH j} J

sm3

� �
:

ð9Þ

The local reaction rate in Eq. (9) is an Arrhenius type, at
constant radius, i.e.,

ox
ot

� �
r

¼ Ae�Ea=�RRT ln
p
peq

� �
kmolH2
sparticleh

� �
: ð10Þ

A reasonable estimate for dAsf=dVðcÞ � p=2r; assuming
spherical particles with r ¼ 15 lm gives dAsf=dVðcÞ � 105
(m2/m3

ðcÞ). Values for cohesive materials (sintered spher-
ical copper powders) are reported to depend quite sen-
sitively on porosity, densification history, applied
tractions, internal stress history, and other factors (Reid
and Oakberg, 1990). Somewhat arbitrarily a value of
dAsf=dV ¼ 104 (m2/m3

ðcÞ) was used as a baseline. A
standard correlation for hsf (for spherical particles) is
available (Kaviany, 1995, p. 403):

NuD ¼ hsfD
kf

¼ 2þ 1:1Re0:6D Pr1=3 ð11Þ

Fukuda et al. (1992) derive a similar relationship
Nu ¼ f ðReÞ for a larger class of porous materials. In any
case, the contribution from the second term is ignored in
this work due to the small values of ReD (or Re ffiffiffiKp )
(Lloyd et al., 1995). A reasonable range of values to
examine is thus hsf 2 ½102; 103	. In the calculations re-
ported here, a value of hsf ¼ 1000 (W/m3K) was used, in
conjunction with kf ¼ 10�1 (W/mK).

3. Boundary conditions

The boundary conditions for a NLTE formulation
are summarized from Lloyd et al. (1999). First, it is
assumed that the sensible energy resulting from tran-
spiration from one reactor and injection into the other is
deposited within a macroscopically thin boundary layer
on the injection side, as depicted in Fig. 4a (White,
1991). This implies that the transport of sensible heat
can be represented as a boundary heat flux between fluid
phases. This avoids the problem of introducing a
‘‘boundary’’ surface convection coefficient, as used in
Dang and Delcambre (1987).
Secondly, the degree to which energy is transferred

between the incoming phase and the resident phases can
be expected to depend upon a characteristic time which
is a function of the injection velocity and the resi-
dent matrix constituents and their thermodynamic state.
For sintered porous metal compacts it is reasonable to
conjecture that the boundary energy transfer is domi-
nated by processes confined within a microscopically
significant entrance depth dr (‘‘assumption two’’). A
value of dr ¼ 0:1 (mm) was used, corresponding roughly
to 3–5 times the characteristic diameter of the starting
powder size. This assumption implies that interphase
energy transport can be modeled as a solid-phase heat
flux boundary condition. These two assumptions can be
written as follows:

Fig. 3. Flowchart of the adaptive grid procedure used for both time-

independent and dependent problems.

G.M. Lloyd et al. / Int. J. Heat and Fluid Flow 23 (2002) 317–329 321



�ðcpfqfvfÞ T
f

ðr0; tÞ � T
f

ðr00 ; tÞ
� �

A0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
equivalent energy transport

from the refrigerator fluid phase
to the regenerator fluid phase

ðJ=sÞ

¼ �kf 0
oT
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or

A00 ð12aÞ

hsf 0
dAsf 0

dVðcÞ0
T
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energy transport between phases
in the boundary deposition region

ðJ=sÞ

¼ �ks0
oT
s

ðr00 ; tÞ
or

A00 : ð12bÞ

In Eq. (12b) V00 ¼ p½ðr00 þ drÞ2 � r200 	L0 denotes the de-
position volume. Eqs. (12a) and (12b) uses nomencla-
ture consistent for transpiration from the refrigerator to
the regenerator. Eqs. (12a) and (12b) apply to the re-
generator.
The remaining two boundary conditions for the

transpiring refrigerator are constraints on the phase
temperature gradients—i.e., the adiabatic approxima-
tions,

oT
s

ðr0; tÞ
or

¼ 0; ð13aÞ

oT
f

ðr0; tÞ
or

¼ 0 ð13bÞ

since there is no thermal connection of the boundary to
the regenerator. In addition, when the reactors are cou-
pled the mechanical driving potential must be equal:

pðr00 ; tÞ ¼ pðr0; tÞ: ð14Þ
Finally, the following steady-state mass flow condition
must be satisfied,

K 0
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There are six unknowns: p, p0, T
f

, T 0
f

, T
s

and T 0
s

. Eqs.
(12a)–(15) provide the required boundary conditions at
the core boundaries.
Fig. 4b depicts the temperature gradients expected to

exist in the local region of the reactor-wall boundary.
The physical picture must be modified to include heat

transfer between a solid–fluid matrix and the single solid
boundary (with the associated temperature TwÞ. In a
one-dimensional geometry there is no tangential com-
ponent to the hydrogen motion. Therefore, heat transfer
between the wall and fluid phase must occur entirely
through conduction,

TwðtÞ ¼ T
f

ðrc; tÞ: ð16Þ

The gradient of the solid-phase temperature is postu-
lated to depend upon a solid–solid contact conductance,
hcsw :

�ks
oT
s

ðrc; tÞ
or

ð1� /ÞAc ¼ hcsw ½T
s

ðrc; tÞ � TwðtÞ	ð1� /ÞAc
ð17Þ

Eqs. (16) and (17) are reasonable approximations for the
macroscopic boundary conditions.
Numerical difficulties are introduced, however, by

Eq. (16). Near the boundary, the use of a single, spa-
tially homogeneous wall temperature in Eq. (16) implies
the existence of a large temperature gradient in the fluid

phase due to the condition T
f

! T
s

, as shown in Fig. 4b.
For the most part, the gradients are also confined in
time. For this reason, and because of the low thermal
conductivity of hydrogen, the gradient of the fluid phase
temperature was approximated using the same form as
Eq. (17):

Fig. 4. (a) Boundary region at r00 , t. Hydrogen at T
f

ðr0; tÞ is injected into the reactor with interface phase temperatures T
f

ðr00 ; tÞ and T
s

ðr00 ; tÞ.
(b) Schematic diagram of conditions existing at the microscopic level dictating idealizations made for interface boundary conditions.
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�kf
oT
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ðrc; tÞ
or

/Ac ¼ hcfw ½T
f

ðrc; tÞ � TwðtÞ	/Ac ð18Þ

A value of hcfw ¼ 50 (W/m2K) was used. This value
eliminated the numerical instabilities referred to earlier.
Eqs. (17) and (18) are the wall boundary conditions for
the NLTE model, in conjunction with the following
energy balance on the reactor wall:

dðcwqwVwTwÞ
dt

¼ hcsw ½T
s
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þ hcsf ½T
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� h1AfðTwðtÞ � TresÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

heat transfer from

reactor wall

into external thermal reservoir

ð19Þ

The first two terms describe heat transfer from the two-
phase reactor matrix into reactor wall. The last term
describes heat transfer from the reactor wall into the
external thermal reservoir.

4. Logical space coordinates

By substituting Eq. (3) into the physical space gover-
ning equations, the transformed equations become:
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The independent spatial variable is understood to be n in
these equations. The discretizations of Eqs. (6)–(8) using
an explicit scheme were given in detail in (Lloyd et al.,
1999). Under the transformation r 7!n the structure
of these equations remains unchanged. As a result, the
difference method can be applied unchanged to Eqs.
(20)–(22) and the boundary conditions.

5. Discretization

A formal discretization is used, as shown in Fig. 5.
Pressure, temperatures and concentration are node cen-
tered. Velocities are derived from the pressure gradient,
and are not calculated independently. With the nota-
tion f .

n
i denoting the value of the function f at the logi-

cal node i at the logical time step n, the solid-phase
energy equation, Eq. (21), becomes:

Fig. 5. Grid nomenclature. The physical cell volume is related to the

computational cell volume by V ¼ JV0.
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Similarly, the discretization of the fluid-phase energy
equation Eq. (22) leads to,
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Finally, the conservation of mass equation becomes:

p .

nþ1
i � p .

n
i

T
f

.

n
i

T
f

.

nþ1
i

¼ Ds
rs
J

p;n .

n
i

�
� p .

n
iT
f

;n .

n
i

!
T
f

.

n
i

�
þ _uuT

f KDs�RR
/c

þ KDsK
/l

p

J2
p;nn .

n
i

�
� p

J3
J;np;n .

n
i þ 1

J

p
rðnÞ p;n .

n
i

þ 1

J2
ðp;n .

n
iÞ2 � p

J2

1

T
f
T
f

;n .

n
ip;n .

n
i

#
ð25Þ

Eqs. (23) and (24) may be solved directly for T
s

.

nþ1
i and

p .

nþ1
i ; Eq. (25) provides T

f

.

nþ1
i . The discretization can be

shown by standard methods to be consistent (Lloyd,
1998) and second-order accurate overall (Strikwerda,
1989).
The proper representation of the source terms from

Eq. (9) follows from Eq. (3):
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where the intrinsic grid reaction rate (the local rate at
the location n ¼ n0 moving with grid speed rsðn0ÞÞ is the
following modification of Eq. (10):
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Eq. (27) is integrated at each timestep by an Euler in-
tegrator:
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The boundary conditions are discretized as follows. Eqs.
(13a) and (13b) are uncoupled and discretized using
second-order difference expressions:
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and from Eq. (14), p .

n
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n
10. The discretized steady-state

mass flow conditions, Eq. (15), is,
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Solving for p .
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10 (the boxed term in Eq. (30)) gives,
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But from Eqs. (31) and (29), p .
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ditions, Eq. (12b), is discretized as follows:
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and
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The fluid-phase energy coupling boundary condition,
Eq. (12a), takes the following form:
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Newton’s method can be used to find the zero of Eq.

(37). Once the fluid-phase temperature function T
f

.

n
10 is

found satisfying Eq. (37), p .

n
1 may be determined from

Eq. (32). Automatically p .

n
10 ¼ p .

n
1. The solid-phase tem-

perature T
s

.

n
10 is found from Eq. (34). For transpiration

from the regenerator to the refrigerator the boundary
conditions are obtained by interchanging the primed
and unprimed indices.
The energy wall balance, Eq. (19), is discretized using

a simple forward time integration:
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The solid-phase/wall boundary condition Eq. (17), and
the approximate fluid-phase/wall boundary condition
Eq. (18) are discretized as follows:
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Eqs. (38) and (39)1;2 apply to both reactors, with primed
space indices suppressed for the regenerator.

6. Discussion

The ability of the adaptive scheme to calculate and
integrate the source terms was assessed by comparing
a moving grid calculation (N ¼ 26) with two station-
ary, uniformly spaced calculations: one with the same
number of nodes, and a fine-zoned fixed grid refer-
ence calculation (N ¼ 51). The grid function used was
(WFGRADLN), Eq. (5). Results are compared during two
different phases (preheating and precooling), as dis-
cussed in the introduction. The grid constants used
were Jmin ¼ 0:65 and b ¼ 8� 10�4; the latter value was
chosen based upon gradients estimated from the fixed
grid calculation during the precooling phase. A com-
plete description of the reactor parameters and the
equilibrium metal hydride models is given in (Lloyd et
al. 1998,2001; Lloyd, 1998).
Fig. 6a and b show the source term _uu, which is a

function of ox=osjn (i.e., Eq. (27)), during the preheat-
ing phase (step one). Fig. 6a is the fixed grid calcula-
tion and Fig. 6b the moving grid. During the preheating
phase heat (at Thot ¼ 150 �C) is applied to the reac-
tor. This promotes an inward moving desorption front.
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Reabsorption in the core region continues until the lim-
iting concentration x ¼ xbmin ¼ 5:5 (kmolH/kmolh) is
reached, at which point further evolution is greatly re-
tarded. The grid trajectories are shown in Fig. 6b. As
can be seen, the moving grid does not alter the basic
desorption field.
The concentration profiles during the preheating

phase are overlain in Fig. 7a. The only observable dif-
ference is that the moving grid calculation predicts a

stagnation front situated closer to the reactor wall. To

see this difference more clearly, the concentration pro-
files at t ¼ 40 (s) are shown in Fig. 7b, which also in-
cludes the result from the reference calculation (N ¼ 51).
Fig. 7b demonstrates that the concentration profile

which develops during this phase is indeed a monotonic

one, and under this situation the moving grid calcula-
tion is evidently able to capture the gradient in the

boundary desorption region quite accurately (with res-

pect to the n ¼ 50 fixed grid reference calculation) using
one half the number of grid points. The difference in the

location of the smaller front at r ¼ 7 (mm) is likely due
to expansion of the grid between the two fronts, as in-
dicated by the grid Jacobian in Fig. 7b, indicating that
modification of Eq. (5) to include curvature is desirable.
During the preheating step the refrigerator reactor

domain is uncoupled from the regenerator, and nor-

mally remains in equilibrium, with T
s

¼ T
f

¼ 20 �C,
p ¼ peq, until the start of the second step. This circum-
stance was used to check for spurious source terms by
setting the grid velocities in the refrigerator to mirror
those of the regenerator (whereas otherwise they would
be zero to machine precision). The result of this proce-
dure is shown in Fig. 8. Fig. 8a shows the mirrored grid
Jacobian field; Fig. 8b shows corresponding _uu and ve-
locity fields, which indeed remain zero in the refrigera-
tor. This test indicated that the discretization produced
no spurious source terms and satisfies the uniformity
constraint mentioned earlier.
Considerably larger gradients as well as more com-

plicated reaction fronts develop during the precooling

Fig. 7. (a) Contours of absorbed hydrogen concentration, x (kmolH/kmolh), in the preheating step, for fixed and moving grids, N ¼ 26. (b) con-
centration profiles at t ¼ 40 s, all three calculations.

Fig. 6. Mass source term _uu (kgH2 /m
3
ðcÞ s) and grid trajectories in the regenerator during the preheating phase. (a) fixed grid, N ¼ 26. (b) moving grid,

N ¼ 26, withImin ¼ 0:65 and b ¼ 8� 10�4. (Note: stepped contours result from termination of kinetics—as from complete absorption or desorption
or a local state of equilibrium—in conjunction with the finite grid size.)
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phase. During this phase, the reactors are also iso-
lated and the hot regenerator is brought to ambient
temperature, T ¼ 20 �C. The monotonic profile in the
regenerator developed during the preheating step (and
maintained during the charging step, when the reactors
are coupled) is lost as the hot reactor is coupled to
ambient temperature. Absorption commences at the
wall boundary and an absorption skin accumulates
rapidly, favored by the relatively low heat transfer re-
sistance from the wall to the ambient reservoir. Con-
current desorption from the core region also requires
heat transfer in order to be sustained. The competing
effects of heat transfer inward to the core to sustain
desorption ( _uu > 0), and heat transfer outward from the
wall skin to the sustain wall absorption ( _uu < 0), lead to
the wide stagnation region where _uu ¼ 0, clearly appar-
ent in the fixed grid calculation (Fig. 9a) and are ulti-
mately the source of the development profile between
5:56 < r < 8 mm, shown in Fig. 10b.

Fig. 9a and b show the mass source fields for the fixed
grid and moving grid cases, respectively. The corre-
sponding concentration fields are overlain in Fig. 10a;
snapshots illustrating the evolution of the concentration
profiles from a monotonic desorption gradient to an
inward moving front with high curvature are shown in
Fig. 10b.
Comparison of the two source fields shows similarity

in general, but significant local differences, which may
broadly be characterized as oscillations of the stagnation
region. The overall effect is to smooth the concentration
profile. This oscillation is a numerical artifact arising
from the purely gradient-based algorithm. With refer-
ence to Fig. 11a, as the wall skin first appears, ox=orjwall
is initially negative, decreases through zero, and be-
comes positive. The grid algorithm reflects the zero
gradient inflection in the concentration profile by redis-
tributing the grid away from the wall—the cause of the
upward spike in the Jacobian in Fig. 11a at t ¼ 126 s.

Fig. 9. Mass source term _uu (kgH2/m3ðcÞ s) and grid trajectories in the regenerator during the precooling phase. (a) fixed grid, N ¼ 26, (b) moving grid,
N ¼ 26, with Jmin ¼ 0:65 and b ¼ 8� 10�4.

Fig. 8. Effect of grid motion in the regenerator and refrigerator during the preheating phase, N ¼ 26. Domains are uncoupled and in the refrigerator
is static, with the grid swept by imposed the grid motion of the regenerator. (a) Grid Jacobians, (b) mass source fields and velocity fields (dotted lines).

G.M. Lloyd et al. / Int. J. Heat and Fluid Flow 23 (2002) 317–329 327



Hence, an unfortunate effect of the gradient-based
scheme is that resolution of the source fields is re-
duced. As the wall skin accumulates, the grid den-
sity in the wall region increases, to a minimum Jacobian
of 0.5 (which may be compared with the set value of
Imin).
The increased grid concentration near the wall en-

ables the moving grid calculation to capture the second
inflection in the profile which occurs after t ¼ 130 s, and
is clearly evident in Fig. 11b at the time, t ¼ 145 s. The
‘‘rounding’’ of the concentration profile at the wall is
predicted by the N ¼ 51 fixed grid result, but not re-
solved by the N ¼ 26 fixed grid result. It is, however,
picked up by the N ¼ 26 moving grid calculation. This,
too, has the same unfortunate effect of decreasing the
grid density near the wall. This is the source of the ab-
sorption spike at about 139 s.
Finally, in order to judge these results from a different

perspective we note that a numerical scheme must also
satisfy conservation laws over finite times. The relative
merit of the different schemes to do so were assessed by

examining the total reactor hydrogen concentration as a
function of time; these comparisons are shown in Fig.
11b. Clearly, the fine-zoned fixed grid calculation satis-
fies mass conservation for both single and coupled do-
mains to a high degree of accuracy. Additionally, all
calculations appear to perform equally well in the re-
frigerator domain, perhaps due to the much smaller
gradients there (i.e., refer to Fig. 1b).

7. Closure

This paper has compared results from a gradient-
based adaptive moving grid method to results obtained
using uniform, fixed grids. The problem of interest in-
cludes strong, localized mass and energy source terms,
and both monotonic reaction fronts as well as those
exhibiting curvature are present. The discretization is
consistent, second-order accurate, and was demon-
strated to be mass conserving. Convergence of the fixed
grid solution was demonstrated by mesh refinement.

Fig. 10. (a) Comparison of concentration contours, (b) comparison at selected times.

Fig. 11. (a) Mass source term at two radii for fixed and moving grid, N ¼ 26 (see Fig. 9a and b). (b) Comparison of reactor hydrogen inventories for
fixed grid (N ¼ 26 and 51) and moving grid, N ¼ 26.
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In the case of a monotonic concentration gradient
occurring during preheating, the comparison showed
excellent agreement between the fixed grid results and
the moving grid study. Further, the moving grid scheme
was able to compute the reaction front gradient which
was achieved only with a fixed grid having twice as many
points.
However in the presence of more complicated fea-

tures exhibiting curvature during precooling, the gradi-
ent-based weight function appeared to degrade accuracy
and distort the mass source field, promoting spatial-
temporal oscillations which smoothed the concentration
profile. Diagnostics based upon correlating the grid Ja-
cobian with the difference between the moving grid and
fixed grid calculations indicates that where differences
exist, they arose in regions of high curvature of the
concentration profile, or in regions where large mass
source terms were present in conjunction with small
gradients, reducing the resolution for the source terms.
On the basis of these results, we propose that grid

weight functions for this class of problems be extended
to incorporate both curvature and measures directly
related to the source terms.
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